日日夜夜免费精品,制服丝袜自拍偷拍,成年人免费网站视频,亚洲精品高清久久

您當(dāng)前的位置:首頁(yè) >> 技術(shù) >> 薄膜與片材擠出 » 正文
聚乙烯流延薄膜性能的影響因素分析
  瀏覽次數(shù):12692  發(fā)布時(shí)間:2020年02月24日 14:28:23
[導(dǎo)讀] 介紹了流延工藝及其所用聚烯烴材料的種類。以低密度聚乙烯(LDPE)、線型低密度聚乙烯(LLDPE)為基料,制備了不同配方的聚乙烯流延薄膜并對(duì)比了其性能,研究了不同流延工藝條件對(duì)流延薄膜性能的影響。結(jié)果表明:LLDPE含量的增加能夠提高薄膜力學(xué)性能,而LDPE能改善薄膜的光學(xué)性能;提高模頭溫度可以使薄膜橫向拉伸斷裂應(yīng)力增加,縱向性能相反,薄膜光學(xué)性能提高,熱封溫度降低;增加牽伸比,薄膜光學(xué)性能降低;提高流延輥溫度,流延薄膜橫向拉伸斷裂應(yīng)力下降,縱向拉伸斷裂應(yīng)力增加,光學(xué)性能下降,熱封溫度提高。
 張清怡,趙志杰,李  蕾
(北京燕山石化高科技術(shù)有限責(zé)任公司,北京市 102500)

摘 要: 介紹了流延工藝及其所用聚烯烴材料的種類。以低密度聚乙烯(LDPE)、線型低密度聚乙烯(LLDPE)為基料,制備了不同配方的聚乙烯流延薄膜并對(duì)比了其性能,研究了不同流延工藝條件對(duì)流延薄膜性能的影響。結(jié)果表明:LLDPE含量的增加能夠提高薄膜力學(xué)性能,而LDPE能改善薄膜的光學(xué)性能;提高模頭溫度可以使薄膜橫向拉伸斷裂應(yīng)力增加,縱向性能相反,薄膜光學(xué)性能提高,熱封溫度降低;增加牽伸比,薄膜光學(xué)性能降低;提高流延輥溫度,流延薄膜橫向拉伸斷裂應(yīng)力下降,縱向拉伸斷裂應(yīng)力增加,光學(xué)性能下降,熱封溫度提高。

關(guān)鍵詞: 聚乙烯 流延薄膜 結(jié)構(gòu) 加工工藝 拉伸性能

塑料薄膜按生產(chǎn)工藝可以分為吹塑薄膜、流延薄膜及拉伸薄膜三種。按產(chǎn)品原料分類,流延薄膜主要有流延聚乙烯(CPE)薄膜、流延聚丙烯薄膜、乙烯-乙酸乙烯共聚物薄膜、聚乙烯醇縮醛薄膜、聚對(duì)苯二甲酸乙二酯薄膜等[1] 。流延薄膜工藝技術(shù)采用T型模頭法,原料樹脂經(jīng)擠機(jī)熔融后通過模頭流延到表面光潔的冷卻輥上,然后迅速冷卻成薄膜。經(jīng)厚度測(cè)試、牽引、電暈處理后,切去邊料,收卷為薄膜卷后再進(jìn)行切分,再進(jìn)行產(chǎn)品包裝。目前,在聚乙烯薄膜生產(chǎn)領(lǐng)域,日本 60%~70%裝置采用CPE工藝,而國(guó)內(nèi)采用CPE工藝僅有5%。相對(duì)于吹膜工藝制備薄膜的平整度±8%的誤差范圍,流延薄膜工藝制備的聚乙烯薄膜平整度誤差可以控制在±1%。與吹塑工藝相比,采用流延工藝能夠制備霧度低于3%的高透明度聚乙烯薄膜,并且能使熱封溫度降低5~10 ℃。因此,國(guó)內(nèi)越來越多的生產(chǎn)廠家開始引CPE設(shè)備,國(guó)內(nèi)CPE設(shè)備由2015年的低于20臺(tái)迅速增長(zhǎng)到目前的近60臺(tái)。本工作從聚乙烯結(jié)構(gòu)、配方及流延工藝對(duì)流延薄膜性能的影響進(jìn)行了詳細(xì)研究,以為下游CPE生產(chǎn)廠家提供指導(dǎo)。

1 實(shí)驗(yàn)部分 
1.1 主要原料 
低密度聚乙烯(LDPE) 226F,熔體流動(dòng)速率為4.0 g/10 min,中國(guó)石油化工股份有限公司(簡(jiǎn)稱中國(guó)石化)北京燕山分公司;線型低密度聚乙烯(LLDPE )7042,熔體流動(dòng)速率為2.0 g/10 min,中國(guó)石化天津分公司。

1.2 主要儀器與設(shè)備 
TA-6200型差示掃描量熱儀,日本精工公司;Magna-IR型傅里葉變換紅外光譜儀,美國(guó)Nicolet公司;ME-30/5200V3型流延機(jī),德國(guó)OCS公司;Instron5566型萬(wàn)能試驗(yàn)機(jī),美國(guó)英斯特朗公司;NDH- 2000型霧度儀,日本電色工業(yè)株式會(huì)社;TP-701S型熱合封口機(jī),日本Sangyo株式會(huì)社。

1.3 流延薄膜的制備 
使用單層流延機(jī),制備流延薄膜試樣,薄膜厚度為(30±5) μm。

1.4 測(cè)試與表征 
差示掃描量熱法(DSC)分析:將約5 mg的試樣在N2保護(hù)下升溫到180 ℃,恒溫10 min,消除熱歷史,降溫得到試樣的結(jié)晶溫度(tc ),再升溫到180 ℃,得到試樣的熔融峰以及熔融溫度(tm)和熔融焓(ΔHm),升、降溫速率均為10 ℃/min。紅外光譜分析:取0.5 g左右試樣,于165 ℃,50kg負(fù)荷下壓制成厚度為300 μm左右的薄片。按GB/T 6040—2002測(cè)試試樣的雙鍵數(shù)和甲基支化度。斷裂拉伸應(yīng)變、拉伸斷裂應(yīng)力、撕裂性能按GB/T 1040.3—2006測(cè)試,拉伸速度為500 mm/min。霧度與透光率按GB/T 2410—2008測(cè)試。流延薄膜的熱封強(qiáng)度按QB/T 2358—1998測(cè)試。

2 結(jié)果與討論 
2.1 聚乙烯結(jié)構(gòu)對(duì)流延薄膜性能的影響制備流延薄膜時(shí),設(shè)定加工溫度為170~200 ℃,螺桿轉(zhuǎn)速為30 r/min,牽引速度為7 m/min,冷卻溫度為25 ℃,分別制備LDPE 226F流延薄膜及 LLDPE 7042流延薄膜,薄膜厚度約為30 μm。聚乙烯既有長(zhǎng)支鏈(100~200個(gè)甚至更多的碳原子),又有短支鏈。短支鏈支化(SCB)對(duì)結(jié)晶度影響較大。SCB影響密度、光學(xué)性能、力學(xué)性能、tm。短支鏈的支化度可以用紅外光譜法測(cè)定[2] ,用甲基 支化度來表現(xiàn)。從表1可以看出:與LLDPE相比,LDPE的甲基支化度更高,支化度對(duì)分子結(jié)構(gòu)規(guī)整性具有破壞作用,可以降低結(jié)晶度,從而提高薄膜的透光率、降低薄膜的霧度。



       Tm和t c決定了薄膜的熱封性能和工藝。t c高有利于提高熱封強(qiáng)度,但tm過高,則熱封溫度會(huì)過高,造成熱封困難,且能耗大。從表1還可以看出:由于LDPE的tm較低,因此薄膜熱封溫度也較LLDPE低。聚乙烯的相對(duì)分子質(zhì)量及其分布是表征聚合物結(jié)構(gòu)的一個(gè)重要參數(shù),對(duì)聚乙烯的聚集態(tài)和結(jié)晶相的形成有重要影響,進(jìn)而對(duì)聚乙烯的加工和使用性能起著決定性的作用[3] 。更高的平均相對(duì)分子質(zhì)量及更窄的相對(duì)分子質(zhì)量分布,使薄膜具有更高的強(qiáng)度。因而LLDPE薄膜比LDPE薄膜擁有更高的拉伸斷裂應(yīng)力,但是兩者的斷裂拉伸應(yīng)變相差不大。

2.2 LDPE與LLDPE不同配比對(duì)流延薄膜性能的影響 
按LDPE與LLDPE質(zhì)量比分別為1 0∶9 0,30∶70,40∶60,50∶50,70∶30,90∶10制備流延薄膜,記作試樣1~試樣6,設(shè)定加工溫度為170~200 ℃,模頭溫度為180 ℃,螺桿轉(zhuǎn)速為30 r/min,冷卻溫度為25 ℃,調(diào)節(jié)流延輥轉(zhuǎn)速使其對(duì)熔體的牽伸比為5.00,制備出不同的流延薄膜,厚度約為30 µm。從圖1看出:隨著LDPE含量的增加,流延薄膜橫向拉伸斷裂應(yīng)力逐漸降低,是由于LLDPE的甲基支化度低,結(jié)晶更完善,因此,LLDPE含量越高,薄膜拉伸斷裂應(yīng)力越高。而縱向拉伸斷裂應(yīng)力先降低后增加,這可能是由于拉伸過程中薄膜會(huì)沿著拉伸方向進(jìn)行取向,單純的LLDPE或LDPE取向程度會(huì)更好,擁有更高的拉伸斷裂應(yīng)力,而兩者的共混物在取向時(shí),分子結(jié)構(gòu)的差異導(dǎo)致取向不完善,因此會(huì)降低縱向拉伸斷裂應(yīng)力。從圖1還看出:隨著LDPE含量的增加,薄膜光學(xué)性能提高,熱封溫度下降,這是由于LDPE的甲基支化度更高,可以降低結(jié)晶度,從而降低霧度。LDPE的tm更低,熱封時(shí)所需能耗更低,從而降低熱封溫度。



綜合不同配比共混物的拉伸性能、光學(xué)性能及熱封性能,選擇m(LDPE)∶m(LLDPE)為30∶70的共混物作為后續(xù)的研究對(duì)象。

2.3 流延工藝對(duì)流延薄膜性能的影響 
2.3.1 牽伸比 
設(shè)定m(LDPE)∶m(LLDPE)為30∶70,加工溫度為170~200 ℃,螺桿轉(zhuǎn)速為30 r/min,冷卻溫度為25 ℃,調(diào)節(jié)流延輥轉(zhuǎn)速使其對(duì)熔體的牽伸比分別為3.75,5.00和7.50,測(cè)得熱封溫度分別為110,107,106 ℃。從圖2可以看出:隨著牽伸比增加,流延薄膜橫向拉伸斷裂應(yīng)力下降,縱向拉伸斷裂應(yīng)力增加;橫向、縱向斷裂拉伸應(yīng)變均增加;隨著牽伸比增加,薄膜霧度增加,光學(xué)性能下降;隨著牽伸比增加,薄膜的熱封溫度降低。因?yàn)殡S著牽伸比增加,沿著牽伸方向的片晶取向程度明顯提高,即提高牽伸比有利于分子鏈在牽伸方向的取向[4] ,因此縱向拉伸斷裂應(yīng)力增加、橫向拉伸斷裂應(yīng)力下降;同時(shí)增加牽伸比能夠促進(jìn)片晶在垂直于牽伸方向上的生長(zhǎng),使流延薄膜縱向形成排列更加規(guī)整有序的片晶結(jié)構(gòu),導(dǎo)致光學(xué)性能下降;然而增大牽伸比相應(yīng)減少了熔體在拉伸應(yīng)力場(chǎng)下冷卻結(jié)晶的時(shí)間,導(dǎo)致結(jié)晶度和片晶厚度有所降低,因此熱封溫度有所下降。


2.3.2 模頭擠出溫度 
設(shè)定m(LDPE)∶m(LLDPE)為30∶70,加工溫度為170~200 ℃,螺桿轉(zhuǎn)速為30 r/min,冷卻溫度為25 ℃,調(diào)節(jié)流延輥轉(zhuǎn)速使其對(duì)熔體的牽伸比為5.00,模頭擠出溫度分別160,180,200 ℃,測(cè)得熱封溫度分別為109,107,105 ℃。從圖3可以看出:隨著模頭擠出溫度升高,流延薄膜橫向拉伸斷裂應(yīng)力增加,縱向拉伸斷裂應(yīng)力、熱封溫度降低,霧度下降,光學(xué)性能提高。這是因?yàn)槟n^擠出溫度低,模頭與流延輥之間有較低的溫差,可以使尚未結(jié)晶完全的鏈段繼續(xù)結(jié)晶,沿著牽伸方向的晶區(qū)缺陷逐漸被完善,因此模頭擠出溫度低,制備的流延薄膜具有較高的縱向拉伸斷裂應(yīng)力。另一方面,模頭擠出溫度升高,熔體從擠出機(jī)口模流出后與流延輥的溫差增加,黏附在流延輥面上相當(dāng)于受到快速冷卻的作用,使熔體在拉伸應(yīng)力場(chǎng)下的結(jié)晶受到了限制,因此結(jié)晶度和片晶厚度都較低,并且結(jié)晶不充分導(dǎo)致生成的晶粒較小,使光學(xué)性能提高。


2.3.3 流延輥溫度 
設(shè)定m(LDPE)∶m(LLDPE)為30∶70,擠出溫度為170~200 ℃,螺桿轉(zhuǎn)速為30 r/min,調(diào)節(jié)流延輥轉(zhuǎn)速使其對(duì)熔體的牽伸比為5.00,流延輥溫度分別為25,30,35 ℃,其中熱封溫度分別為107,108,110 ℃。 從圖4可以看出:隨著流延輥溫度升高,流延薄膜橫向拉伸斷裂應(yīng)力下降,縱向拉伸斷裂應(yīng)力增加,霧度增加,光學(xué)性能下降,熱封溫度提高。這是因?yàn)楫?dāng)流延輥溫度較低時(shí),熔體從擠出機(jī)口模流出后黏附在流延輥表面被迅速冷卻,使熔體在拉伸應(yīng)力場(chǎng)下的結(jié)晶受到了限制,因此結(jié)晶度和片晶厚度都較低。流延輥溫度升高時(shí),相當(dāng)于給予黏附在流延輥表面的流延薄膜一定的熱處理作用,使鏈段結(jié)晶更完善,結(jié)晶度和片晶厚度都得到提高,因此,提高流延輥溫度,流延薄膜縱向拉伸斷裂應(yīng)力增加,光學(xué)性能下降,熱封溫度提高。


3 結(jié)論 
a)與LLDPE相比,LDPE結(jié)構(gòu)規(guī)整度低,相對(duì)分子質(zhì)量分布寬,所制流延薄膜具有更低的熱封溫度、更優(yōu)異的光學(xué)性能,但是力學(xué)性能較差。 
b)隨著共混物中LDPE含量的增加,流延薄膜的橫向拉伸斷裂應(yīng)力逐漸降低,但是縱向拉伸斷裂應(yīng)力則先降低后增加,光學(xué)性能提高,熱封溫度降低。 
c)提高模頭擠出溫度可以使薄膜橫向拉伸斷裂應(yīng)力增加,縱向拉伸斷裂應(yīng)力降低,薄膜光學(xué)性能提高,熱封溫度降低;增加牽伸比,薄膜光學(xué)性能降低;提高流延輥溫度,流延薄膜橫向拉伸斷裂應(yīng)力下降,縱向拉伸斷裂應(yīng)力增加,光學(xué)性能下降,熱封溫度提高。


參考文獻(xiàn) 
[1] 陶宏. 中國(guó)流延薄膜的現(xiàn)狀與新發(fā)展[J]. 塑料制造,2009 (Z1):48-52. 
[2] 何曼君,陳維孝,董西俠. 高分子物理[M]. 上海:復(fù)旦大學(xué)出版社,1990:34. 
[3] 桂祖桐. 聚乙烯樹脂及其應(yīng)用[M]. 北京:化學(xué)工業(yè)出版社, 2002:52-120. 
[4] 沈鵬,楊興成,朱夢(mèng)冰,等. 流延工藝條件對(duì)聚乙烯流延基膜取向片晶結(jié)構(gòu)和拉伸成孔性的影響[J]. 高分子材料科學(xué) 與工程,2015,31(5):129-134.